Stability of highly cooled hypervelocity boundary layers

نویسندگان

  • N. P. Bitter
  • J. E. Shepherd
چکیده

The influence of high levels of wall cooling on the stability of hypervelocity boundary layers is investigated. Such conditions are relevant to experiments in high-enthalpy impulse facilities, where the wall temperature is much smaller than the free-stream temperature, as well as to some real flight scenarios. Some effects of wall cooling are well known, for instance, the stabilization of the first mode and destabilization of the second mode. In this paper, several new instability phenomena are investigated that arise only for high Mach numbers and high levels of wall cooling. In particular, certain unstable modes can travel supersonically with respect to the free stream, which changes the nature of the dispersion curve and leads to instability over a much wider band of frequencies. The cause of this phenomenon, the range of parameters for which it occurs and its implications for boundary layer stability are examined. Additionally, growth rates are systematically reported for a wide range of conditions relevant to high-enthalpy impulse facilities, and the stability trends in terms of Mach number and wall temperature are mapped out. Thermal non-equilibrium is included in the analysis and its influence on the stability characteristics of flows in impulse facilities is assessed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experiments on Passive Hypervelocity Boundary-Layer Control Using an Ultrasonically Absorptive Surface

Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface to damp the second mode (Mack mode). Boundary-layer transition experiments were performed on a sharp 5.06-deg half-angle round cone at zero angle of attack in the T5 Hypervelocity Shock Tunnel to test this concept. The cone was const...

متن کامل

Afrl-osr-va-tr-2015-0040 Transition Delay in Hypervelocity Boundary Layers by Means of Co2/acoustic Insta

The potential for hypervelocity boundary layer stabilization was investigated using the concept of damping Mack’s second mode disturbances by vibrational relaxation of carbon dioxide (CO2) within the boundary layer. Experiments were carried out in the Caltech T5 hypervelocity shock tunnel and the Caltech Mach 4 Ludwieg tube. The tests used 5-degree half-angle cones (at zero angle of attack) equ...

متن کامل

Observations of hypervelocity boundary-layer instability

A novel optical method is used to measure the high-frequency (up to 3 MHz) density fluctuations that precede transition to turbulence within a laminar boundary layer in a hypervelocity flow. This optical method, focused laser differential interferometry, enables measurements of short-wavelength, high-frequency disturbances that are impossible with conventional instrumentation such as pressure t...

متن کامل

Simulation of the Digital Image Processing Algorithm for the Coating Thickness Automatic Measurement of the TRISO-coated Fuel Particle

TRISO (Tri-Isotropic)-coated fuel particle is widely applied due to its higher stability at high temperature and its efficient retention capability for fission products in the HTGR (high temperature gas-cooled reactor), one of the highly efficient Generation IV reactors. The typical balltype TRISO-coated fuel particle with a diameter of about 1 mm is composed of a nuclear fuel particle as a ker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015